Skip to main content
Skip to footer
Home
Interview Questions
Machine Learning Basics
Deep Learning
Supervised Learning
Unsupervised Learning
Natural Language Processing
Statistics
Data Preparation
Technical Quizzes
Jobs
Home
Interview Questions
Machine Learning Basics
Deep Learning
Supervised Learning
Unsupervised Learning
Natural Language Processing
Statistics
Data Preparation
Technical Quizzes
Jobs
Login
Sign Up
Explore Questions by Topics
Computer Vision
(1)
Generative AI
(2)
Machine Learning Basics
(18)
–
Deep Learning
(52)
DL Basics
(16)
–
DL Architectures
(17)
Feedforward Network / MLP
(2)
Sequence models
(6)
Transformers
(9)
DL Training and Optimization
(17)
–
Natural Language Processing
(27)
NLP Data Preparation
(18)
–
Supervised Learning
(115)
–
Regression
(41)
Linear Regression
(26)
Generalized Linear Models
(9)
Regularization
(6)
–
Classification
(70)
Logistic Regression
(10)
Support Vector Machine
(9)
Ensemble Learning
(24)
Other Classification Models
(9)
Classification Evaluations
(9)
–
Unsupervised Learning
(55)
–
Clustering
(37)
Distance Measures
(9)
K-Means Clustering
(9)
Hierarchical Clustering
(3)
Gaussian Mixture Models
(5)
Clustering Evaluations
(6)
Dimensionality Reduction
(9)
Statistics
(34)
–
Data Preparation
(35)
Feature Engineering
(30)
Sampling Techniques
(5)
DL Training and Optimization
Q.
What is Parameter Efficient Fine-Tuning (PEFT)?
Q.
What is an activation function? What are the different types of activation functions? Discuss their pros and cons
Q.
What is Rectified Linear Unit (ReLU) activation function? Discuss its advantages and disadvantages
Q.
What is the “dead ReLU” problem and, why is it an issue in Neural Network training?
Q.
What are some strategies to address Overfitting in Neural Networks?
Q.
What is Dropout?
Q.
Describe briefly the training process of a Neural Network model
Q.
What do you mean by saturation in neural network training? Discuss the problems associated with saturation
Q.
What is the vanishing and exploding gradient problem, and how are they typically addressed?
Q.
Why is Zero-centered output preferred for an activation function?
Q.
What are the key hyper-parameters of a neural network model?
Q.
What is an activation function, and what are some of the most common choices for activation functions?
Q.
What are some options for making Backpropagation more efficient?
Q.
Discuss Softmax activation function
Q.
What is Sigmoid (logistic) activation function?
Q.
Discuss TanH activation function
Q.
What are some guidelines for choosing activation functions?
Partner Ad
Explore Questions by Topics
Computer Vision
(1)
Generative AI
(2)
Machine Learning Basics
(18)
–
Deep Learning
(52)
DL Basics
(16)
–
DL Architectures
(17)
Feedforward Network / MLP
(2)
Sequence models
(6)
Transformers
(9)
DL Training and Optimization
(17)
–
Natural Language Processing
(27)
NLP Data Preparation
(18)
–
Supervised Learning
(115)
–
Regression
(41)
Linear Regression
(26)
Generalized Linear Models
(9)
Regularization
(6)
–
Classification
(70)
Logistic Regression
(10)
Support Vector Machine
(9)
Ensemble Learning
(24)
Other Classification Models
(9)
Classification Evaluations
(9)
–
Unsupervised Learning
(55)
–
Clustering
(37)
Distance Measures
(9)
K-Means Clustering
(9)
Hierarchical Clustering
(3)
Gaussian Mixture Models
(5)
Clustering Evaluations
(6)
Dimensionality Reduction
(9)
Statistics
(34)
–
Data Preparation
(35)
Feature Engineering
(30)
Sampling Techniques
(5)
Search
Join us on:
Machine Learning Interview Preparation Group
@OfficialAIML
Find out all the ways that you can
Contribute
Other Questions in DL Training and Optimization
What are options to calibrate probabilities produced from the output of a classifier that does not produce natural probabilities?
What are the subtypes of Cross Validation?
What is Specificity?
Explain the concept and working of the Random Forest model
How does a learning curve give insight into whether the model is under- or over-fitting?
What is the difference between Discriminative and Generative models?