Discuss Softmax activation function

Activation functions transform a linear combination of weights and biases into an output that has the ability to learn part of a complex function at each node of a network. The most basic activation function is the linear one, which is simply a weighted combination of the weights and biases fed into a given node. No matter how many layers or units present in the network, using a linear activation function at each node is nothing more than a standard linear model. However, much of the power of Neural Networks is derived from using nonlinear activation functions at each node.

Softmax is one such non-linear activation function. In the case where the output layer has multiple units, such as in multiclass problems, the Softmax activation is appropriate. The output of the softmax can be interpreted as the probability of an observation belonging to each class, where the probabilities sum up to 1. 

Author

Help us improve this post by suggesting in comments below:

– modifications to the text, and infographics
– video resources that offer clear explanations for this question
– code snippets and case studies relevant to this concept
– online blogs, and research publications that are a “must read” on this topic

Leave the first comment

Partner Ad
Find out all the ways that you can
Contribute