How is clustering affected by high-dimensional data, and how can the quality of clusters generated be improved in such cases?

One problem of performing clustering in high-dimensional data is that common distance metrics, such as Euclidean distance, do not perform as well as the number of dimensions becomes large. This is one of the issues caused by the Curse of Dimensionality, as the distance between any pair of points becomes less distinguishable as the dimensionality increases. One approach for dealing with high-dimensional data is to first reduce the dimensionality through a technique like PCA and then perform clustering on the principal components rather than the original data. Alternatively, algorithms such as DBSCAN are better suited to K-Means for identifying clusters in high-dimensional data.

Author

Help us improve this post by suggesting in comments below:

– modifications to the text, and infographics
– video resources that offer clear explanations for this question
– code snippets and case studies relevant to this concept
– online blogs, and research publications that are a “must read” on this topic

Leave the first comment

Partner Ad
Find out all the ways that you can
Contribute