What differentiates Linear Discriminant Analysis (LDA) from Quadratic Discriminant Analysis (QDA)?

LDA assumes heterogeneity among class variances, meaning they each share a single covariance matrix, while QDA allows for each class to have its own variance. Thus, QDA provides additional flexibility for learning non-linear decision boundaries. It is generally recommended to try both LDA and QDA on a dataset and use cross validation to determine which performs best.

Author

Help us improve this post by suggesting in comments below:

– modifications to the text, and infographics
– video resources that offer clear explanations for this question
– code snippets and case studies relevant to this concept
– online blogs, and research publications that are a “must read” on this topic

Leave the first comment

Partner Ad
Find out all the ways that you can
Contribute