Skip to main content Skip to footer
  • Home
  • Interview Questions
    • Machine Learning Basics
    • Deep Learning
    • Supervised Learning
    • Unsupervised Learning
    • Natural Language Processing
    • Statistics
    • Data Preparation
  • Technical Quizzes
  • Jobs
  • Home
  • Interview Questions
    • Machine Learning Basics
    • Deep Learning
    • Supervised Learning
    • Unsupervised Learning
    • Natural Language Processing
    • Statistics
    • Data Preparation
  • Technical Quizzes
  • Jobs
LoginSign Up
Explore Questions by Topics
  • Computer Vision (1)
  • Generative AI (2)
  • Machine Learning Basics (18)
  • Deep Learning (52)
    • DL Basics (16)
    • DL Architectures (17)
      • Feedforward Network / MLP (2)
      • Sequence models (6)
      • Transformers (9)
    • DL Training and Optimization (17)
  • Natural Language Processing (27)
    • NLP Data Preparation (18)
  • Supervised Learning (115)
    • Regression (41)
      • Linear Regression (26)
      • Generalized Linear Models (9)
      • Regularization (6)
    • Classification (70)
      • Logistic Regression (10)
      • Support Vector Machine (9)
      • Ensemble Learning (24)
      • Other Classification Models (9)
      • Classification Evaluations (9)
  • Unsupervised Learning (55)
    • Clustering (37)
      • Distance Measures (9)
      • K-Means Clustering (9)
      • Hierarchical Clustering (3)
      • Gaussian Mixture Models (5)
      • Clustering Evaluations (6)
    • Dimensionality Reduction (9)
  • Statistics (34)
  • Data Preparation (35)
    • Feature Engineering (30)
    • Sampling Techniques (5)

What is a Multilayer Perceptron (MLP) or a Feedforward Neural Network (FNN)?

Categories: Feedforward Network / MLP
Updated: April 4, 2025

Related Questions:
– What is a Perceptron? What is the role of bias in a perceptron (or neuron)?

– What is Deep Learning? Discuss its key characteristics, working and applications
– Explain the basic architecture and training process of a Neural Network model

Introduction

A Multilayer Perceptron (MLP) is one of the simplest and most common neural network architectures used in machine learning. It is a feedforward artificial neural network consisting of multiple layers of interconnected neurons, including an input layer, one or more hidden layers, and an output layer. In the context of Deep Learning, a Perceptron is usually referred to as a neuron, and a Multi- Layer Perceptron structure is referred to as a Neural Network.

MLPs are capable of learning complex and non-linear relationships in data (as shown in pic below), especially when they have multiple hidden layers and non-linear activation functions.


Title: Learning of a complex pattern by Multilayer perceptron
Source: MIT Deep Learning Course

Key components and working of a Multilayer Perceptron

A Multi-Layer Perceptron learns to map inputs to outputs through a process of forward propagation and backpropagation, adjusting its weights and biases based on the error between its predictions and the actual data. This learning process allows it to capture and model complex relationships in the data. Presented below are the key characteristics and training process of an MLP model:

  • Input layer: The process starts with the input layer, which receives the input data. Each neuron in this layer represents a feature of the input data.
  • Weighted Connections and Biases
    Connections between neurons have associated weights, which are learned during the training process. These weights determine the strength of the connections and play a crucial role in the networkʼs ability to capture patterns in the data. In addition, each neuron, in the hidden and output layers has an associated bias term, which allows for fine-tuning and shifting the activation functionʼs threshold. These weights and biases are parameters that the neural network learns during training.
Multilayer-perceptron , feedforward neural network
Title: Multilayer perceptron (MLP), a feedforward neural network
Source: AIML.com Research
  • Hidden Layers: After the input layer, there are one or more hidden layers. The neurons in these layers perform computations on the inputs. The output of each neuron is calculated by applying a weighted sum of its inputs (from the previous layer), adding a bias, and then passing this sum through an activation function.
Zooming into a neuron
Depicting input and output to a neuron in hidden layers
  • Activation Functions
    The activation function is crucial as it introduces non-linearity into the model, allowing it to learn more complex patterns. Common activation functions include sigmoid, tanh, and ReLU (Rectified Linear Unit).
  • Forward Propagation
    The process from the input layer through the hidden layers to the output layer is called forward propagation. In each layer, the aforementioned steps (weighted sum, bias addition, activation function) are applied to compute the layer’s output. In an MLP, information flows in one direction, from the input layer through the hidden layers to the output layer. There are no feedback loops or recurrent connections, hence the name feedforward architecture.
Forward propagation
Forward propagation in a Neural Network (Source: AIML.com Research)
Note: bias term is not shown in the above diagram
  • Output layer
    The final layer is the output layer. In a classification task, this layer often uses a softmax function if the task is multi-class classification, or a sigmoid function for binary classification. For regression tasks, no activation function might be applied in the output layer.
  • Backpropagation and Learning: Once a forward pass through the network is completed, the output is compared to the true value to calculate the error. The error is then propagated back through the network (backpropagation), adjusting the weights and biases to minimize the error. Backpropagation is typically done using optimization algorithms, such as stochastic gradient descent (SGD) and its variants.
backpropagation explanation
Backward propagation in a neural network (Source: AIML.com research)
  • Iteration and Convergence: The process of forward propagation, error calculation, backpropagation, and parameter update is repeated for many iterations over the training data. Gradually, the network learns to reduce the error, and the weights and biases converge to values that make the network capable of making accurate predictions or approximations.

Applications of Multilayer perceptron

MLPs are universal function approximators, i.e. they are capable of approximating any continuous function to a desired level of accuracy, given enough hidden neurons and appropriate training. This property makes them powerful tools for solving a wide range of problems including:

  • Classication such as sentiment analysis, fraud detection
  • Regression such as score estimation
  • NLP tasks such as machine translation
  • Anomaly Detection
  • Speech Recognition in virtual assistant systems such as Siri, Alexa
  • Computer Vision for object identification, image segmentation
  • Data analytics and data visualization

Video explanation

  • In this set of two videos (Runtime: 15 mins and 21 mins respectively) by Coding Train, Daniel Shiman provides a good build up of why we need Multilayer perceptron (consisting of multiple neurons and layers) as compared to a single perceptron (a neuron) to solve complex non-linear problems. You may choose to watch just the first video to gain a good understanding or continue with the second part for a deeper insight.
YouTube video
Multilayer perceptron playlist by Coding Train, Daniel Shiman

Author

  • AIML.com

Help us improve this post by suggesting in comments below:

– modifications to the text, and infographics
– video resources that offer clear explanations for this question
– code snippets and case studies relevant to this concept
– online blogs, and research publications that are a “must read” on this topic

Leave the first comment (Cancel Reply)

You must be logged in to post a comment.

Partner Ad
Explore Questions by Topics
  • Computer Vision (1)
  • Generative AI (2)
  • Machine Learning Basics (18)
  • Deep Learning (52)
    • DL Basics (16)
    • DL Architectures (17)
      • Feedforward Network / MLP (2)
      • Sequence models (6)
      • Transformers (9)
    • DL Training and Optimization (17)
  • Natural Language Processing (27)
    • NLP Data Preparation (18)
  • Supervised Learning (115)
    • Regression (41)
      • Linear Regression (26)
      • Generalized Linear Models (9)
      • Regularization (6)
    • Classification (70)
      • Logistic Regression (10)
      • Support Vector Machine (9)
      • Ensemble Learning (24)
      • Other Classification Models (9)
      • Classification Evaluations (9)
  • Unsupervised Learning (55)
    • Clustering (37)
      • Distance Measures (9)
      • K-Means Clustering (9)
      • Hierarchical Clustering (3)
      • Gaussian Mixture Models (5)
      • Clustering Evaluations (6)
    • Dimensionality Reduction (9)
  • Statistics (34)
  • Data Preparation (35)
    • Feature Engineering (30)
    • Sampling Techniques (5)
Join us on:
  • Machine Learning Interview Preparation Group
  • @OfficialAIML
Find out all the ways that you can
Contribute
Other Questions in Feedforward Network / MLP
  • How are Regression and Classification performed using multilayer perceptrons (MLP)? 
Partner Ad
Learn Data Science with Travis - your AI-powered tutor | LearnEngine.com
© 2025 AIML.COM  |  ♥ Sunnyvale, California