What is Extreme Value Imputation?

Extreme Value Imputation: Replace the missing values with an arbitrary value located at the far end of the distribution of the feature, for example 999. This would not be a recommended approach for a linear model but sometimes works well with decision tree algorithms, as if there is predictive power of the missingness, a decision tree would be able to utilize the extremity of the coding to harness that predictability. 

Author

Help us improve this post by suggesting in comments below:

– modifications to the text, and infographics
– video resources that offer clear explanations for this question
– code snippets and case studies relevant to this concept
– online blogs, and research publications that are a “must read” on this topic

Leave the first comment

Partner Ad
Find out all the ways that you can
Contribute