What is Independent Component Analysis (ICA), and how is it distinguished from PCA?

ICA is a specialized dimensionality reduction technique that is used for finding independent components within a multivariate signal. It relies on the assumption that the hidden components are independent of each other and non-normally distributed, where the latter comes into play in the mathematical optimization for finding the individual components.

A fictitious but canonical use case of ICA would be distinguishing individual voices in a loud party setting, in which to a distant bystander, the sound would be a cacophony of indistinguishable voices. ICA is specifically used to separate components out of higher-dimensional data rather than simply reduce the dimensionality like PCA.

Author

Help us improve this post by suggesting in comments below:

– modifications to the text, and infographics
– video resources that offer clear explanations for this question
– code snippets and case studies relevant to this concept
– online blogs, and research publications that are a “must read” on this topic

Leave the first comment

Partner Ad
Find out all the ways that you can
Contribute