What is Mahalanobis Distance?

The Mahalanobis Distance is a multivariate form of the Euclidean Distance that accounts for correlation between dimensions. If the correlation between features is 0, the Mahalanobis Distance is equivalent to the Euclidean distance. The Mahalanobis Distance is frequently used in multivariate outlier detection, as it measures the distance of each observation to the mass of the distribution using its mean and correlation structure. For two vectors x and x’ and covariance matrix Σ, the Mahalanobis Distance is given by:

Author

Help us improve this post by suggesting in comments below:

– modifications to the text, and infographics
– video resources that offer clear explanations for this question
– code snippets and case studies relevant to this concept
– online blogs, and research publications that are a “must read” on this topic

Leave the first comment

Partner Ad