What is Manhattan Distance?

The Manhattan distance, or L1 norm, measures the sum of absolute distance between two vectors. This measure calculates distance in a grid-like path rather than as the crow flies. It is believed that as the dimension of the data increases, the Manhattan Distance is preferred to the Euclidean, as the latter is more prone to suffer from the Curse of Dimensionality. 

Author

Help us improve this post by suggesting in comments below:

– modifications to the text, and infographics
– video resources that offer clear explanations for this question
– code snippets and case studies relevant to this concept
– online blogs, and research publications that are a “must read” on this topic

Leave the first comment

Partner Ad