Probabilistic (Fuzzy) Clustering: Each observation is assigned to one or more clusters with a probability of belonging to each. The cluster assignments are conceptualized as having a probability distribution of belonging to each cluster rather than one exclusive assignment. This has the advantage of quantifying uncertainty if there is ambiguity in cluster assignments. There exists a fuzzy version of K-Means that implements soft clustering, and Expectation-Maximization approaches like Gaussian Mixture models also have this capability.
What is Probabilistic (Fuzzy) Clustering?
Help us improve this post by suggesting in comments below:
– modifications to the text, and infographics
– video resources that offer clear explanations for this question
– code snippets and case studies relevant to this concept
– online blogs, and research publications that are a “must read” on this topic
Partner Ad